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This study is dedicated to the design of a ball-type balancer system installed on the
high-speed disk drive in order to reduce radial vibrations of rotors caused by eccentricities of
disk's center of gravity and circular runway of the ball balancer. The ball balancer is
a promising candidate due to its low cost and capability to completely eliminate radial
vibrations under the conditions that runway eccentricity, damping and friction are not
present. A mathematical model was established "rst for the analysis of the dynamics of
a rotor}balancer system. The in#uence of concerned parameters, e.g., runway eccentricity
and rolling resistance, on residual vibrations was then explored through solving the
equations for steady state solutions. The results were used to evaluate the performance of
balancers in terms of vibration reduction. The design guidelines for minimizing the
vibrations by controlling the aforementioned concerned parameters were provided based on
the parametric analysis conducted. Finally, experimental study was orchestrated and
performed to verify the validity of the mathematical model and demonstrate balancer
capability for reduction of radial vibrations.
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1. INTRODUCTION

Due to unavoidable manufacture tolerance, each disk possesses a small amount of
unbalance, which may lead to detrimental dynamic e!ects under high-speed rotations. The
preliminary treatment for reducing radial vibrations of a rotor}disk system consists in
balancing the disk while manufacturing. However, as mass production of disks makes the
balancing for each disk impossible, auto-balancing devices and active suspensions are the
legitimate candidates for reducing vibrations. Compared with the traditional single- or
double-level suspensions which are composed of damping washers for isolating vibrations,
the auto-balancers directly counteract the unbalanced vibration source by means of the
centrifugal forces generated in motion, in which way the balancer system is proven more
e!ective in reducing radial vibrations. Thearel [1, 2] initialized a series of analyses on
various types of auto-balancers, wherein the following conclusions were drawn: (1) Lablanc
balancer, a #uid-type balancer, fails to achieve a complete vibration elimination, exhibiting
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moderate levels of residual vibrations due to damping; (2) ring balancers have di$culty in
regulating the friction between the ring and the shaft; (3) pendulum balancers do not show
a satisfactory vibration reduction and have high cost of physical arrangement; (4) ball
balancers show excellent balancing e!ects above the critical speed despite a poor
performance below the critical speed.

Among all the aforementioned devices, the ball balancer is superior to the others owing to
low friction, low cost and ease to implement. A few studies following Thearel were
conducted to further explore the capability of ball balancers. Inoue et al. [3] utilized
numerical methods to analyze the dynamics of a rotor/balancer system assuming a constant
speed. BoK vik andHoK gfors [4] showed that the auto-balancers were applicable to planar and
non-planar vibrating rotors. Jinnouchi et al. [5] concluded that ball balancers provide
excellent balancing above the critical speed, but lead to moderate vibrations at low speeds.
This moderate vibration is then enlarged in the neighborhood of the critical speed due to
self-excitation.Without constructing equations of motion, Majewski [6] found the negative
e!ects of ball rolling resistance and runway eccentricity on the rotor/balancer system at
steady state. Rajalingham and Rakheja [7] "rst consider contact friction of balancing balls
in the model for analysis. Chung and Ro [8] used a variational method to derive equations
of motion in polar coordinates. Based on the concepts of ball balancers, several
implementation designs were proposed and documented in patents [9}12].

Although several works have been conducted for ball balancers, there is still no complete
parametric analysis via the construction of equations of motion which simultaneously
accommodates the dynamic e!ects of runway eccentricity, rolling resistance and drag force
on residual vibrations. To achieve the complete parametric analysis, this study starts with
the establishment of a mathematical model for describing the dynamics of the rotor/
balancer behavior. The steady state solutions were solved for the evaluation of residual
vibrations. Then a parametric study is conducted based on the various steady state
solutions for di!erent realistic parameter ranges. The e!ects of three major parameters,
runway eccentricity, rolling resistance and drag force, were studied to develop the design
guidelines for achieving the smallest level of radial vibration possible. Finally, an
experimental set-up was designed and built to verify the validity of the analytical model.

This paper is organized as follows. In section 2, the mathematical model of the
rotor/balancer system is established and the dynamic equations governing the lateral
motions of the stator and the rotary motions of the balls are formulated. In section 3,
a parametric analysis is performed to provide design guidelines. The experimental
apparatus and process are described in section 4. The results are compared with theoretical
counterparts for validating the correctness of the mathematical model.

2. MATHEMATICAL MODEL

To capture the dynamics of the unbalanced motions, the system that consists of the main
components of an optic disk drive can be classi"ed into two categories: rotating and
non-rotating parts. The assembly of all rotating parts is called &&the equivalent rotor'',
containing the disk, magnetic holding device and the rotor of the spindle motor. The
assembly of all non-rotating parts is called &&the equivalent stator'', containing the
foundation structure of the motor, the stator of the spindle motor, the optical pickup head,
and its electrical driving unit. Without loss of generality, the following assumptions were
made from the outset to facilitate the derivation of a mathematical model.

1. The rotor shaft is treated as a rigid body, leading to no transverse vibrations while in
rotation.



Figure 1. (a) The balls are contained in a cap that is placed on the top of the disk. (b) The balls are integrated into
the spindle motor and located under the turntable.

RADIAL VIBRATION REDUCTION OF DISK DRIVES 417
2. The equivalent rotor is treated as a rigid body, i.e., the disk and its magnetic holding
device are "xed to each other, exhibiting no relative motion while in high-speed
rotations.

3. After the optical pickup unit completes a single tracking process, the stator of the
spindle motor, its foundation, the optical pickup head and its electrical driving
unit are considered together as a rigid body, i.e., the equivalent stator is treated as
a rigid body.

Based on the above assumptions, the motion of the unbalanced rotor is mainly in radial
directions due to the horizontal #exibility of the damping washers that constitute the
suspension system. The #exibility of these washers is assumed to be well characterized by
equivalent linear springs and dampers, denoted by (K

�
, K

�
) and (C

�
, C

�
) respectively. Note

that since the suspension constituted by washers is much more #exible than that of spindle
bearing, bearing dynamics is not considered herein. With the assumptions made for the
stator}rotor foundation system, ball balancers are then added for radial vibration
reduction. Figure 1 shows two generic designs for physical arrangements of balancers
[12]. To incorporate the dynamics of balls into the system, the following assumptions
are made.

1. The runway shapes as a perfect circle and the balls are assumed to be perfect spheres.
While the balls, considered as point masses, move along the runway, they always keep
point contacts with outer #anges of the runway, which is true in real operation of
steady state due to the centrifugal "eld.

2. Because of manufacturing tolerance, the center of the circular runway deviates from
the rotating center of the rotor by a small distance.

3. The gravitational e!ect on the balls is small compared to the centrifugal "eld.
4. No slip occurs while the ball moves since slip friction is much greater than rotational

friction.

With the assumptions made for the rotor and the ball balancer, the physical system can
be simpli"ed as shown schematically in Figure 2, where, without loss of generality, only one
ball with mass m and radius r is considered. To perform the ensuing analysis, the following
notations and co-ordinates are de"ned. G

�
and G

�
denote the C.G.s of the equivalent rotor

and stator respectively.M
�
and M

�
are the corresponding masses. O

�
denotes the C.G. of

the ball. O
�
is the rotation center of the rotor, i.e., O

�
X

�
>

�
is "xed to the stator where the



Figure 2. The mathematical model of the rotor.
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subscript S denotes the stator. O
�
denotes the origin of the inertial co-ordinate O

�
X

�
>

�
,

which coincides with O
�
while the disk is at rest. Let X and > be the displacements of

O
�
de"ned inO

�
X

�
>

�
parallel to axesO

�
X

�
and O

�
>

�
respectively. Then,A"�X�#>�

represents the magnitude of the residual radial vibration of the disk-drive assembly.
O

�
denotes the center of balancer's circular runway and also the origin of the moving

co-ordinate O
�
X

�
>

�
. The deviation of O

�
from O

�
is due to runway eccentricity, which is

quanti"ed by �. e captures the C.G. eccentricity of equivalent rotor relative to O
�
, i.e.,

e"�O
�
G

�
�. �, de"ned in co-ordinate O

�
X

�
>

�
, denotes the rotating angle of the disk, i.e., the

angle between O
�
X

�
and O

�
O

�
. �, de"ned in co-ordinate O

�
X

�
>

�
, denotes the lead angle of

the rotor's C.G. location with respect to the current angular position of the rotor. �, de"ned
in co-ordinateO

�
X

�
>

�
, denotes the lead angle of the ball position with respect to the current

angular position of the rotor. With su$ciently de"ned notations, the equations of motion
for the ball and rotor system are derived consecutively in the following.

Assuming that no slip occurs between the ball and runway #ange, the slip friction force,
denoted by F, induces a rolling moment on the ball. Acting on the ball is drag forceD due to
aerodynamic resistance and rolling resistant momentM

�
mainly due to the rolling friction

with runway outer #ange. Figure 3(a) illustrates the spatial actions of the aforementioned
forces. Two accelerations, de"ned in the inertia co-ordinates O

�
X

�
>

�
, are next derived to

capture the dynamics of the ball. As illustrated in Figure 3(b), the net ball acceleration can
be decomposed into tangential acceleration a

�
and runway #ange acceleration a

	
. Through

the transformations bridging the inertial co-ordinates O
�
X

�
>

�
and the translating

co-ordinates O
�
X

�
>

�
and O

�
X

�
>

�
, a

�
and a

	
can be formulated by

a
�
"R(�G#�G )!(XG!��G sin �!��Q � cos �) sin(�#�)

#(>G#��G cos �!��Q � sin �) cos(�#�), (1)

a



"(R#r)�G!(XG!��G sin �!��� � cos �) sin(�#�)

#(>G#��G cos�!��Q � sin �) cos(�#�). (2)



Figure 3. (a) Force equilibrium of a ball. (b) De"nitions of ball accelerations.
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Balancing the forces and moments acting on the ball as shown in Figure 3(a) leads to two
equilibrium equations

F!D sign(�Q )"ma
�
, (3)

Fr!M
�
[!sign(�Q )]"I �

�
, (4)

where �
�

is the ball angular acceleration relative to runway outer #ange. Combining
equations (3) and (4) for eliminating F and incorporating equations (1) and (2) into the
de"nition of �

�
, r�

�
"a



!a

�
, the equation of motion for a single ball balancer can be

derived as

�m#

1

r��R(�G#�G )"m[(XG!��G sin �!��� � cos �) sin(�#�) (5)

!(>G#��G cos �!��Q � sin �) cos(�#�)]

!D sign(�Q )!
M

�
r

sign(�� )#
(R#r)

r�
I�G .

The expressions of a
�
and a

	
in equations (1) and (2) enable the derivations of the inertial

forces generated by ball motion. These inertial forces are the interactive forces of the ball
with the rotor system through the contact with runways, which can be treated as external
forces for the rotor system. Then the equations of motion of the equivalent stator for a single
ball can be derived easily by balancing the total forces, which are listed as below.

MXG#C
�
XQ #K

�
X"M

�
[��G sin �#��Q � cos �#e�G sin(�#�)#e�Q � cos (�#�)]

#m[��G sin �#��Q � cos �#R(�G#�G ) sin(�#�)#R(�Q #�� )� cos(�#�)], (6)

M>G#C

>Q #K

�
>"M

�
[!��G cos �#��Q � sin �!e�G cos(�#�)#e�Q � sin(�#�)]

m[!��G cos �#��Q � sin �!R(�G#�G ) cos(�#�)#R(�Q #�Q )� sin(�#�)],

where M"M
�
#M

�
#m. Generalizing the system equations (5) and (6) to consider

a rotor system with multiple balls yields

MXG#C
�
XQ #K

�
X"M

�
[��G sin �#��Q � cos �#e�G sin(�#�)#e�Q �cos(�#�)]

#m
�
� [��G sin �#��Q � cos �#R(�G#�G

�
) sin(�#�

�
)#R(�Q P�Q

�
)� cos(�#�

�
)],
���
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M>G #C

>Q #K

�
>"M

�
[!��G cos �#��Q � sin �!e�G cos(�#�)#e�Q �sin(�#�)]

(7)

#m
�
�
���

[!��G cos �#��Q � sin �!R (�G#�G
�
) cos(�#�

�
)#R (�Q #�Q

�
)� sin(�#�

�
)],

�m#

I

r��R(�G
�
#�G )"m[(XG!��G sin �!��Q � cos �) sin(�

�
#�)!(>G#��G cos �!��Q � sin �)

cos(�
�
#�)]!D sign(�Q

�
)!

M
�
r

sign(��
�
)#

(R#r)

r�
I�G .

3. PARAMETRIC ANALYSIS

3.1. EFFECTS OF RUNWAY ECCENTRICITY

In order to understand the e!ects of eccentricity of the runway center, the system is
simpli"ed by the following assumptions.

1. No rolling resistance, i.e., M
�
"0.

2. At steady state, no drag force, i.e., D"0.
3. At steady state, the rotor rotates at constant speeds, i.e., �Q "�, and the balls are

motionless relative to runway, i.e., �Q "�G"0. The existence of the steady state
motionless solution for the balls can be veri"ed easily by numerical simulation.

4. The damping washers of the suspension system have the properties,K
�
"K

�
"K and

C
�
"C

�
"C.

For the sake of simpli"cation, only a single ball with mass m is considered. With the
assumptions made above, the system equation (7) at steady state can be simpli"ed as

MXG#CXQ #KX"M
�
[��� cos�t#e�� cos(�t#�)]

#m[��� cos�t#R�� cos(�t#�
�
)],

M>G #C>Q #K>"M
�
[��� sin�t#e�� sin(�t#�)] (8)

#m[��� sin�t#R�� sin(�t#�
�
)],

m[(XG !��� cos�t) sin(�t#�
�
)!(>G !��� sin�t) cos(�t#�

�
)]"0,

where �
�
is the steady state angular position of the ball. The "rst and second equations

describe the C.G. motion of the stator and are in the form of linear second order equations
with external harmonic excitations in identical frequencies. Due to the identity, the multiple
harmonics on the R.H.S. of the "rst and second equations can be synthesized into two
individual single harmonics, and then the solutions X(t) and >(t) can be easily obtained.
Substituting the solved X(t) and >(t) into the third equation of equation (8), a
time-independent algebraic equation can be acquired as follows to solve for �

�
which,

de"ned in co-ordinate O
�
X

�
>

�
, is the angular position of the ball relative to the rotating

angle of the rotor � at steady state.

C�[mR#eM
�
cos(�!�

�
)#(m#M

�
)� cos�

�
]!(K!M��)eM

�
sin(�!�

�
) (9)

#�
(K!M��)�#(C�)�

��
#(K!M��)(m#M

�
)]� sin�

�
"0.



Figure 4. The relations between the potentials E
�
and the angular position of the ball � with runway eccentricity

�"0 and various �: } } } } }, �"0; ) ) ) ) ) ) ) ), �"�/2; * )*, �"�; **, �"3�/2.

RADIAL VIBRATION REDUCTION OF DISK DRIVES 421
It can be calculated that there are two feasible solutions �
�
for equation (9). Through

calculation of eigenvalues of equation (8) for each solution, the associated stability can be
determined. Based on a number of computations, it is often bound that only one of the two
feasible �

�
is stable. Due to the complexity of stability analysis involved, the process of

computation is not elaborated herein.
With the stable solutions of �

�
, the steady state motion of the ball in view of inertial

co-ordinates O
�
X

�
>

�
can be easily obtained using the fact O

�
O

�
"O

�
O

�
#O

�
O

�
#O

�
O

�
,

which can be presented in the following form:

O
�
O

�
"A

�
cos(�t#	)i4#A

�
sin(�t#	) j4 , (10)

where

A
�
"

��

A

(A#2KM#m(m!2M)��)(R�#��#2R� cos�)

#2M
�
(�#R cos�)[(K#(m!M)��)(�#e cos �)#Ce� sin�]

!2M
�
R sin�(C��#C�e cos�)!e(K#(m!M)��) sin� sin�

#M�
�
�� (e�#��#2e� cos�)�

and 	 is the solved phase of ball oscillation observed from inertial co-ordinate O
�
X

�
>

�
,

which is not shown herein due to its complexity. To avoid cumbersome stability analysis,
a method based on simple physical rules by means of a potential-energy formulation for the
ball is developed to make a quick judgment on which one of two �

�
solutions is stable.

De"ne that the ball's potential is zero at �"0, then at a given �, the potential is

E
�
"!�

(

�

m(A
�
��) dA

�
"!

1

2
mA�

�
��. (11)

Utilizing equation (11) and the expression of A
�
in equation (10), the potentials versus

� with �"0 and some values of � for the case of M
�
e"mR can be calculated and are

shown in Figure 4. Note that the assumption M
�
e"mR refers to the case of perfect

balance in which a single ball generates a counterbalance exactly equal to the inherent
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unbalance of the rotor system. It can always be found in Figure 4 that the value of � leading
to the lowest potential corresponds to the stable solution of �

�
determined by stability

analysis. Therefore, it is suggested that to simplify the computation process, one can
calculate the potential formulated in equation (11) to determine which one of two feasible
�
�
's is stable, and then the ball motion at steady state can be calculated by the harmonic

form equation (10) with the determined stable �
�
.

The performance of the ball balancer is evaluated by the magnitude of the residual radial

vibration of the rotor-balancer system, i.e., A"�X (t)�#> (t)�, which is derived by
incorporating the solution equation of �

�
equation (9) into the "rst and second equations in

equation (8) and solving for the periodic steady state solutions ofX(t) and>(t), which yields

X(t)"
(K!M��)��

(K!M��)�#(C�)�
[(M

�
#m)� cos(�t)#M

�
e cos(�t#�)#mR cos(�t#�

�
)]

#

C��

(K!M��)�#(C�)�
[(M

�
#m)� sin(�t)#M

�
e sin(�t#�)#mR sin(�t#�

�
)],

>(t)"
(K!M��)��

(K!M��)�#(C�)�
[(M

�
#m)� sin (�t)#M

�
e sin (�t#�)#mR sin (�t#�

�
)]

!

C��

(K!M��)�#(C�)�
[(M

�
#m)� cos(�t)#M

�
e cos(�t#�)#mR cos(�t#�

�
)],

and then

A"�X(t)�#>(t)�

"��

�
(M

�
#m)���#(M

�
e�)#(mR)�#2�eM

�
(M

�
#m)cos�#2meM

�
Rcos(�!�

�
)#2�mR(M

�
#m)cos�

�
(K!M��)�#(C�)�

.

(12)

For the case of M
�
e"mR, Figure 5(a) shows the analytical solution A by equation (12)

versus various � and �, while Figure 5(b) shows the corresponding solutions as directly
obtained through simulating the dynamic model equation (7) by using SIMULINK, which
indicate a good agreement with those obtained in Figure 5(a). From both Figures 5(a) and
5(b), it is seen that non-zero � gives rise to residual radial vibrations and this rise of
vibrations is ampli"ed around 903 of �. In other words, to reduce residual radial vibrations,
one ought to control the eccentricity � to be as small as possible.

3.2. THE EFFECT OF ROLLING RESISTANCE

Several physical factors stated as follows are considered as the attributes of rolling
resistance [13, 14].

1. Due to the fact that the balls and runway #anges are not perfectly rigid bodies, the
deformations lead to a contact surface, instead of a point, between balls and runway
#anges, which induces the rolling resistance.

2. The deformation process undergoes a cycle of elastic hysteresis that causes energy loss
that also leads to an increase of rolling resistance.



Figure 5. The residual radial vibration level A versus runway eccentricity � and the C.G. lead angle � for the
case of perfect balance and M

�
"0. (a) Analytical results; (b) SIMULINK results.
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3. The imperfections due to manufacture tolerance on the geometric shapes of runway
surface and balls generate rolling resistance.

To understand the e!ects of rolling resistance on system dynamics, the assumptions
utilized for the analysis in section 3.1 are also employed in this section. Incorporating the
assumptions into equation (7), and assuming a single ball balancer with mass m for the sake
of simplicity, the system equation (7) at steady state become

MXG #CXQ #KX"M
�
[��� cos(�t)#e�� cos(�t#�)]#m[��� cos(�t)

#R�� cos(�t#�
�
)], (13a)

M>G #C>Q #K>"M
�
[��� sin(�t)#e�� sin(�t#�)]#m[��� sin(�t)

#R�� sin(�t#�
�
)], (13b)

�m
[XG !��� cos(�t)] sin(�
�
!�t)![>G !��� sin(�t)] cos(�

�
#�t))�)�

M
�
r � , (13c)

where equation (13c) indicates that at steady state the inertial forces generated by balls must
be smaller than or equal to the resistant force generated by rolling resistance M

�
.

Conducting the same process as used previously, �
�
, the steady state angular position of

the ball, can be calculated using equation (13) as follows, which is derived by solving
equations (13a), (13b) for X(t) and >(t), and substituting them into equation (13c).

�
m��[mRC�#eC�Mr cos(�!�

�
)!eMr(k!M��) sin(�!�

�
)]

(K!M��)�#(C�)� �)�
M

�
r � . (14)

In what follows, (�!�
�
) replaces �

�
to characterize the steady state ball position due to the

particular complexity involved in equation (14). Based on equation (14), a complete balance,
i.e.,X(t)">(t)"0, is not necessarily achieved due to the existence of a non-zero, smallM

�
,

even when �"0 and M
�
e"mR. For an easy computation of unbalance level, (�!�

�
) is

chosen to serve as a valid indicator for characterizing levels of unbalance due to the
following two facts. First, as �"0, to achieve a complete balance, (�!�

�
) must be equal to

1803rendering R.H.S. of equations (13a, b) equal to zero. Secondly, a deviation of (�!�
�
)

from 1803 increases levels of residual radial vibrations.
Inequality (14) is next solved for (�!�

�
) to obtain the steady state angular position of

the ball. Based on the inequality form of equation (14), for a given value of rolling resistance



Figure 6. The solutions of (�!�
�
) versus various values of rolling resistance M

�
with runway eccentricity

�"0, 1, 2 �m: **, �"0 �m; } } } }, �"1 �m; * )*, �"2 �m.

Figure 7. The maximum residual radial vibration levelsA
���

versus various values of runway eccentricity � with
M

�
"0, 0)5�10��, 1�10��, 1)5�10��, �"603; **, M

�
"0 Nm; } }} }, M

�
"0)5�10�� Nm; } - },

M
�
"1)0�10�� Nm; ) ) ) ) ) ) ) ), M

�
"1)5�10�� Nm.
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M
�
, there exist multiple distinct solutions for (�!�

�
) which form continuous "nite ranges.

The distinct solutions of (�!�
�
) in these "nite ranges will lead to distinct residual

unbalance levelsA1s, yielding an inconsistency in balancing e!ectiveness. Figure 6 shows the
solved (�!�

�
) values versus variousM

�
for the case of perfect balance; i.e.,M

�
e"mR, and

three di!erent values of �, where for each value of � two "nite ranges between the curves and
prescribed by arrows in the "gure indicate two sets of the feasible solutions of (�!�

�
). It is

seen from Figure 6 that as rolling resistanceM
�
increases, the range of (�!�

�
) is enlarged

and even equal to 3603 asM
�
approachesM

�
"3)7�10��, resulting in a serious problem of

inconsistency. Therefore, one needs to ensure a small M
�
to minimize feasible ranges of

(�!�
�
) solution for a satisfactory consistency. It is also seen from Figure 6 that as � varies,

for a givenM
�
, a slight increase in runway eccentricity � induces a phase-shift-like e!ect on

(�!�
�
) but leaves the sizes of solution ranges of (�!�

�
) almost unchanged. Therefore, the

e!ect of � on the consistency is insigni"cant.
With the solutions of (�!�

�
) in hand, the corresponding residual radial vibration levels

A1s are next computed for �"603, various �,M
�
andM

�
e"mR. The results are shown in
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Figure 7 where A
���

is used to capture the maximum values of A for all possible solutions of
(�!�

�
) with given values of �,M

�
and �. It can be seen that A

���
increases as runway

eccentricity � and rolling resistance M
�
increase.

3.3. THE EFFECT OF DRAG FORCE

The drag force induced by the dynamic interaction between the ball and the #uid-"lled
runway is formulated and analyzed herein to investigate its e!ects on system transient
response. The drag force is assumed to be in the following form [15]:

D"!�
�
C
�

�
���	
<�
���
AM sign(<

���
), (15)

where<
���

is the relative speed of ball to the #uid,C
�
is the drag coe$cient that is a function

of ball size, shape, surface roughness and dynamic viscosity, �
���	

is #uid density and AM is
the frontal area of ball. From equation (15), one can see that D vanishes as the ball reaches
its steady state, i.e., <

���
"0.

To understand the e!ects of various types of #uids on transient responses, the following
assumptions are made for simpli"cation.

1. The balls have smooth surfaces.
2. The #uid is uniformly distributed in runway and motionless relative to runway.

Based on the above assumptions and force balance of the balls, the equations of motion for
the system with a single ball equivalently can be rewritten as

MXG #CXG #KX"M
�
[e�G sin(�#�)#e�Q � cos(�#�)]

#m[R(�G#�G ) sin(�#�)#R(�Q #�Q )� cos(�#�)]

M>G #C>G #K>"M
�
[!e�G cos(�#�)#e�Q � sin(�#�)]

#m[!R(�G#�G ) cos(�#�)#R(�Q #�Q )� sin(�#�)]
(16)

�m#

1

r�� R(�G#�G )"m[XG sin(�#�)!>G cos(�#�)]

!

1

2
C

�
�
���	

(R�Q )� (�r�) sign (�� )#
(R#r)

r�
I�G .

The software SIMULINK is next used to simulate the system response with rotating
speed increased from 0 to 2)5 orders (2)5 times of suspension natural frequency) in 2 s. When
the #uid "lling the runway is air, the ball takes more than 10 s to reach steady state. If the
#uid is SAE 30 oil, the ball balancer is able to reach steady state in less than 10 s. Although
both experimental results are far from satisfying the industrial standard on response time
requirement, these do indicate that drag force has a damping-like e!ect on the system
transient response, which reveals the potential to help stabilize the desired steady state
solution and to decrease response time.

Designers of rotor}balancer systems can refer to analytical results obtained in sections
3.1}3.3 to "nd the optimum design parametric values possible for runway eccentricity and
rolling resistance, and choose the right #uid under the limitations imposed by system
nature. General design guidelines for tuning these three parameters are decreasing runway
and C.G. eccentricity, minimizing rolling resistance and choosing such a #uid to "ll runway
that leads to a smooth and fast transient response.



Figure 8. Photograph of the experimental apparatus.
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4. EXPERIMENTAL STUDY

Experimental study is next performed to verify the validity of the established
mathematical model in order to ensure the legitimacy of the analytical results obtained and
design guidelines proposed.

4.1. DESIGN OF EXPERIMENTAL APPARATUS

Figure 8 shows a photograph of the experimental apparatus which includes seven
subsystems: a balancer system composed of a circular runway and a ball inside, a test disk,
a spindle motor accompanied with a driving circuit, the motor supporting structure, an
accelerometer unit, a stroboscope and a signal analyzer.

The circular runway of the balancer system was made of aluminum alloy with an inner
radius of 16)5 mm. A thin, cylindrical glass ring was press-"tted inside the runway in order
to make the contact surface between the ball and runway smooth enough so that the rolling
resistance was greatly reduced. The runway eccentricity was obtained by placing a precision
dial gauge perpendicular to runway wall and measuring the rotating radii as circular
runways rotate 3603. A test disk was attached "rmly on the motor}balancer assembly
through a magnetic holding device in an annular shape. The inherent unbalance of the
rotor system was identi"ed prior to experiments, simply by placing a point mass on the
circumference of the disk three times at distinct positions with 1203 span and summing up
the corresponding unbalance in the form of vectors, which is 0)272 g cm. The ball weighs
0)261 g, leading to an unbalance of 0)43 g cm which is larger than the unbalance of the rotor
system. A set comprising a spindle motor and its driver widely used commercially for
a variety of optic disk drives is chosen for experiments. The motor base structure
assimilated to washer #exibility was built using four L-shaped beams stretched horizontally



TABLE 1

Applied system parameter values

System parameters Applied values Reference values from
commercial optic drives

Natural frequency �
�
( f

�
) 21)2 Hz 40}50 Hz

Mass of equivalent stator M
�

102 g M"M
�
#M

�
#nm

Mass of equivalent rotor M
�

36)1 g Total mass M : 100}150 g
Ball mass m 0)261 g Disk mass M

����
: around 15)8 g

Ball radius r 1)25}2 mm 1)25 mm
Runway radius R 16)5 mm 15 mm

Suspension sti!ness K
�
, K

�
2455 N/m K"M��

�0)1 for rubber
Suspension damping ratio  0)025 0)05 for plastic

0)025 for metal
C.G. eccentricity e 0)068 mm around 0)5 mm

Runway eccentricity � 0)01 mm 0)001}0)05 mm
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to positive and negative X, > directions. These four beams were designed to have
cross-sections with much larger vertical thickness than horizontal in order to induce a much
larger vertical rigidity for the beams. This large rigidity in fact restricts the vertical motion
of the balancer}motor assembly greatly. The accelerometers are attached horizontally on
the supporting structure to record the accelerations in X, > directions. The dimensions of
the four beams were designed to specify horizontal natural frequencies for the structure,
�

��
+�

��
+21)2 Hz that was controlled to be well below the operating speeds of disk

drives. Table 1 lists related parameter values of the experimental apparatus.

4.2. EXPERIMENTAL PROCESS

A schematic of the instrumentation used in the experimental process is presented in
Figure 9. In the process, the motor was "rst powered by a power supply unit through the
driver to accelerate the rotation of rotor up to desired speeds. In the meantime, the driver
also sent a speed signal to the stroboscope for tuning its #ashing frequency in synchrony
with the rotating speeds in order to observe the steady state angular position of the ball
balancer. As the ball settled to its steady state, the ball angular position was recorded
manually, while the accelerations of the motor}balancer unit in X, > directions
were measured by accelerometers, recorded by the analyzer, and converted to radial
displacements by a simple MATLAB program.

4.3. EXPERIMENTAL RESULTS

With � calibrated around 0)4 �m, Figure 10 shows both experimental and analytical
results for the phase di!erence between the angular positions of the disk C.G. and ball,
(�!�

�
), with respect to various speed ratios. It can be seen that most of the experimental

data of (�!�
�
) are located in the range within theoretical upper/lower bounds

corresponding to a non-zero rolling resistance M
�
"1)5�10��, except for those near

natural frequency (speed ratio )2). This is due to the fact that in the neighborhood of



Figure 9. Schematic of experimental instrumentation.
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natural frequency resonance signi"cantly enlarges the levels of vibration which causes
rolling friction to dominate the system dynamics and then leads to unpredictable steady
state of ball position. It is also shown in Figure 11 that experimental residual radial
vibration levels are close to the theoretical predictions as speed varies. The results shown in
Figures 10 and 11 verify the capability of the mathematical model constructed in the
previous section.

5. CONCLUSION

This study investigated the dynamics e!ects of runway eccentricity, rolling resistance and
drag force on a rotor}balancer system that is designed to reduce residual unbalanced
vibrations. The results were obtained by formulating the equations of motion, solving for
steady state solutions, and verifying them by numerical simulations. It was found that
non-zero runway eccentricity and rolling resistance contributed to an increase in residual
vibrations, while the existence of drag force improved transient response. With the analysis
completed, design guidelines were readily provided for designers for controlling the
aforementioned system parameters to their optimal values in order to reduce residual
vibrations to minima. Experiments were also designed and conducted to verify theoretical
results. A satisfactory agreement was con"rmed between theoretical and experimental
results.



Figure 10. Theoretical and experimental phase di!erences between the C.G. and the ball (�!�
�
) versus speed

ratios �/�
�
: *, experimental measurements; *, theoretical predictions.

Figure 11. Theoretical and experimental residual vibration levels A versus speed ratios �/�
�
: *, experimental

measurements;*, theoretical predictions.
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